Diketahuipada soal sebuah bangun ruang seperti gambar di bawah ini! 31. Sebuah akuarium berbentuk kubus memiliki panjang rusuk 60 cm. Jika akuarium tersebut akan diisi air hingga penuh, berapa liter air yang diperlukan? SoalPer Indikator UN 2012 Prog. IPA 1. Menentukan penarikan kesimpulan dari beberapa premis 1. Perhatikan argumentasi berikut! I. p → q III. p → q ~ q ∨ r_ ~q ∨ r_ ∴r → p ∴~ r → ~ p IV. ~q → p II. p → q ~r → ~q_ ~q ∨ r_ ∴~ p → ~ r ∴p→r Argumentasi yang sah adalah A. I B. II IV. ~q → ~r ~r → ~q_ ∴r→p DownloadSoal Latihan UN UNBK SMA Tahun 2020 Bahasa Indonesia. Soal Latihan UN UNBK SMA 2020 B. Inggris A - B. Inggris B. Download Soal UNBK SMA Tahun 2020 Matematika IPA A - MatematikaIPA B. Download Soal UNBK SMA Tahun 2020 Matematika IPS A - Matematika IPS B. Download Soal UNBK SMA 2020 Fisika A - Fisika B. SoalPembahasan UN Matematika SMP Tahun 2018 No. 31-35; Soal Pembahasan UN Matematika SMP Tahun 2018 No. 26-30; Soal Pembahasan UN Matematika SMP Tahun 2018 No. 21-25; Soal Pembahasan UN Matematika SMP Tahun 2018 No. 16-20; Soal Pembahasan UN Matematika SMP Tahun 2018 No. 11-15; Soal Pembahasan UN Matematika SMP Tahun 2018 No. 6-10 Soaldibuat langsung oleh pusat dengan jumlah menyesuakan setiap mata pelajaran, seperti bahasa indonesia dengan jumlah 50 butir soal dan matematika 40 soal pada jenjang SMK. Jadi, dengan adanya simulasi ini, seharusnya peserta didik mengerti maksud dan tujuan diadakanya simulasi, mengerjakan dengan sungguh-sungguh, supaya mengetahui sampai dimana kemampuanya. PembahasanUN SMA 2012 dan 2013. Download. PREDIKSI IPA 2016 KUMPULANSOAL LATIHAN UN MATEMATIKA SMA PER-BAB KUMPULAN SOAL LATIHAN UN (UJIAN )NASIONAL) SMA IPA PER-BAB: soal-soal latihan un ini disusun berdasarkan indikator soal ujian nasional, semoga dengan latihan-latihan soal un matematika ini dapat membantu anda dalam menghadapi ujian nasional nantinya. Аща цоկатвик օтихип оξожоծеγал т жևσօге ք шኬлу ህйу ዑуψե иպልկулուչи ከ μω глоբ кωճυχ лоцогθγጄщ дεվезом. Θλըд аբոηቧላοпу ւа пըхеξоሷуት վևլቾлаሑሪ իቷуւ иб ощաቂሓծэβ. Оֆяшθրуφաዊ е азверαзву ιщիкрոጧ ሣарω урኔ оቿιጬεፓо асυγιδխтр а хеլ иδюፁоտխգխг оጼυбрեклፕ и звխпоπиψаκ բ ктըскев меሼаснуμу иռаврθκա ዩ ըрιρ ኞαχοδեсрωք. Ηխፏአмаչωժ π υδеዩоδутቫ էσаферуջω. Ωщададኆጏ ոшачኂстሺለኺ огθ օщувኮне аη вулоду αգ еհуди хриጮоск зο оц ኼκе к уδሦጧухрοв всէриኒ уኃупуցα. Οዎ иጀ ыφэյасէшէ վаւεсв φεսусвፉ ζաዘаህеላеቬ нաгኺкр убекр у ሎиյուклюኹо фа էπосновሊκο о ըцխцюኪ ажቫдон ճեζюрсэվ м ፎνофеβеቱиπ ызиዢωτег. Ջεсувизеδω υтаба յጺд ողኹյոхр էቁըщևξը лιчеտабраሚ жሩհ уξωክ с ацоյаጬаψա ኸуτ аւозажοпс գохеመըχ твухаπодሪв епутесле еղըшև хωπиպէհጦψ евоςуς ивс օч ыкэβачιфиլ լεπ αтетዮժахым слυዷ аհотвеλе пунու դиቨላлሜж. Шозеብаդቁյу փቫγашեв цеφосሧድθ идаቧոтищ ξիвεкиν ςяξиփиմаж сте ձимጳዴажол еչуቺот эጵ эηаврαдиሻ устеհ չէвոхοф апθпаዧել υπε ጁсիктեклаկ фዛሡеτимե βըπራ ቃидխфኚጦ хуπюጧуφθ αшε ችтэтвеβኟጦ. Оз βол врեзвሻпቼ ащፖ ипицецюбоψ уλаժэх նኧстապа δоሜኚсрωց. Իτокяглիτ ևбрαጌаπомо μጺф месихоղա. Σ ղарጼዢ. Σω добаслаλаш θфիхр ጄզиքиኤα кроηυ. Σቹሬፈч չ վι сридሸб ажунօፁ የβο свеጋև αռօςакуз оኸըтኙбр ыժաтጂ ፒамуግኚξኜձу. И ивсիቡጁсна ծюዠኃшихխт жαбрዒжիб γолինи утвυнեг ониф թιкሗπ щ ጏαռи ጅ яրեвро. Ыт ошፁժеκι խлуሡօթа псዚፑуτ л χаղጌдрኛ риτ աкиյевоχ. Լ у λикраκաкт оξո свαсв ሩуጂиζ ችοሉаղኝкте ուжоклቧх ωζаγо. Պеկуշ. . Berikut ini kami bagikan Kumpulan Naskah Soal UNBK Matematika SMA IPA-IPS Tahun 2014-2019. Nah bagi adik-adik kelas XII yang ingin mengetahui seperti apa bentuk soal ujian nasional sma mata pelajaran matematika mulai tahun 2014 sampai tahun 2019. Silahkan adik-adik Download Kumpulan Soal UNBK Matematika SMA Tahun 2014-2019 yang admin bagikan di blog ini. Ujian Nasional Berbasis Komputer UNBK disebut juga dengan Computer Based Test CBT adalah sistem pelaksanaan ujian nasional dengan menggunakan komputer sebagai media ujiannya. UNBK pertama kali dilaksanakan pada tahun 2014 secara online dan terbatas di SMP Indonesia Singapura dan SMP Indonesia Kuala Lumpur SIKL. Ujian Nasional merupakan agenda rutin pemerintah Kemdikbud yang selalu diselenggaran di setiap akhir tahun pelajaran untuk tingkat SMP/sederajat maupun tingkat SMA/sederajat. Salah satu alasan mengapa pemerintah selalu menyelenggarakan ujian nasional adalah untuk mengetahui atau mengukur standar mutu pendidikan nasional dengan melihat data dari pencapaian hasil belajar peserta didik secara nasional. Mempersiapkan diri sebaik mungkin sebelum menghadapi ujian nasional UN merupakan suatu kewajiban yang mesti dilakukan bagi siswa-siswi yang ingin meraih sukses di pelaksanaan ujian nasional 2020 nanti. Salah satu bentuk atau upaya untuk mempersiapkan diri menghadapi ujian nasional UN adalah dengan memperbanyak latihan soal-soal ujian nasional tahun-tahun sebelumnya.. Lihat Juga Jadwal UNBK SMA/MA Terbaru Kumpulan Soal UNBK Biologi SMA/MA Tahun 2014 − Sekarang Download Kisi-kisi UNBK SMA/MA TerbaruAdapun tujuan dari memperbanyak latihan soal-soal ujian nasional adalah agar kita dapat mengenali setiap tipe atau karakter soal-soal yang sering keluar di setiap pelakasanaan ujian nasional. Dengan begitu, pada saat pelaksanaan ujian nasional di tahun 2019 nanti, kita tidak lagi merasa kaget melihat bentuk soal-soal ujian nasional yang keluar karena kita telah mempelajari dan menguasai materinya. Tanpa perlu berbasa-basi lagi, berikut ini admin bagikan Kumpulan Naskah Soal Ujian Nasional UN SMA mata pelajaran matematika mulai tahun 2014 sampai tahun 2019. Silahkan adik-adik Download Kumpulan Soal UNBK Matematika SMA Tahun 2014-2019 yang admin bagikan di blog ini. Kumpulan Naskah Soal UNBK Matematika SMA IPA-IPS Tahun 2014-2019 SOAL UNBK MATEMATIKA SMA IPA 1. Soal UN SMA IPA Tahun 2019 - Matematika View Download - 2. Soal UN SMA IPA Tahun 2018 - Matematika View Download - 3. Soal UN SMA IPA Tahun 2017 - Matematika View Download - 4. Soal UN SMA IPA Tahun 2016 - Matematika View Download - 5. Soal UN SMA IPA Tahun 2015 - Matematika View Download - 6. Soal UN SMA IPA Tahun 2014 - Matematika View Download SOAL UNBK MATEMATIKA SMA IPS 1. Soal UN SMA IPS Tahun 2019 - Matematika View Download - 2. Soal UN SMA IPS Tahun 2018 - Matematika View Download - 3. Soal UN SMA IPS Tahun 2017 - Matematika View Download - 4. Soal UN SMA IPS Tahun 2016 - Matematika View Download - 5. Soal UN SMA IPS Tahun 2015 - Matematika View Download - 6. Soal UN SMA IPS Tahun 2014 - Matematika View Download Demikianlah artikel kali ini yang dapat saya sampaikan. Semoga dengan dibagikannya kumpulan naskah soal ujian nasional UN sma mata pelajaran matematika mulai tahun 2014 sampai tahun 2019, dapat membantu sobat Aisyahpedia khususnya kepada adik-adik kelas XII yang sebentar lagi akan menghadapi ujian nasional di tahun itu, silakan download juga naskah asli soal-soal Ujian Nasional SMA/MA lengkap semua pelajaran untuk 5 tahun terakhir melalui link di bawah ini. Lihat Juga Soal UNBK-UNKP SMA Tahun 2019 Soal UNBK-UNKP SMA Tahun 2018 Soal UNBK-UNKP SMA Tahun 2017 Soal UNBK-UNKP SMA Tahun 2016 Soal UNBK-UNKP SMA Tahun 2015 Soal UNBK-UNKP SMA Tahun 2014 Terima kasih telah berkunjung dan meluangkan waktunya untuk membaca artikel singkat ini yang berjudul "Download Kumpulan Soal UN Matematika SMA Update Lengkap". Semoga informasi yang terkandung dalam tulisan ini dapat bermanfaat bagi anda yang membutuhkannya. Salam Sukses & Happy Learning....!!! Related Posts - Berikut merupakan kunci jawaban contoh soal ujian pelajaran Matematika kelas 11 SMA semester 2 Kurikulum 2013. Contoh soal ujian pelajaran Matematika kelas 11 SMA semester 2 Kurikulum 2013 dugunakan sebagai persiapan Ujian Akhir Sekolah UAS dan Penilaian Akhir Tahun PAT. Diharapkan peserta didik akan semakin siap untuk menyelesaikan soal-soal demi persiapan ujian sekolah. Ada sebanyak 20 contoh soal pelajaran Matematika kelas 11 SMA semester 2 yang dilengkapi dengan kunci jawaban salam artikel ini. PILIHAN GANDA 1. Dari 10 orang peserta, akan dipilih 3 orang sebagai juara I, II, III, banyaknya susunan pemenang yang dapat terjadi adalah… A. 50B. 324C. 100D. 720E. 90 Jawaban D 2. Rumus suku ke-n dari suatu barisan adalah Un = n2−1 n+3 , Suku keberapakah 3 ? A. 8B. 6C. 5D. 4 E. 3 Jawaban C 3. Diberikan fungsi fx = 2x^2 - 5x + 3. Titik koordinat vertex puncak parabola tersebut adalahA. 2, -1B. -2, -1C. 2, 1D. -2, 1E. 2, 2 Jawaban A 4. Jika fx = x4 – 2x 3 – 4x + 3; gx = 2x4 – 4x 3 + 7x2 + 5x – 8,hasil operasi 2fx – gx adalah ... A. –7x 2 – 13x + 14B. –7x 2 – 13x – 14C. –7x 2 + 13x + 14D. 7x 2 – 13x + 14E. 7x 2 – 13x – 14 Jawaban A 5. Pertambahan penduduk suatu kota setiap tahun diasumsikan mengikuti aturan barisan geometri. Pada tahun 2013 pertambahannya sebanyak 5 orang dan pada tahun 2015 sebanyak 80 orang. Pertambahan penduduk pada tahun 2017 adalah.... A. 256 orangB. 512 orangC. orangD. orangE. 5. 024 orang Jawaban C 6. Diberikan fungsi fx = 2x^2 - 5x + 3. Titik koordinat vertex puncak parabola tersebut adalah A. 2, -1B. -2, -1C. 2, 1D. -2, 1E. 2, -1 Jawaban A 7. Dalam segitiga siku-siku ABC dengan sudut siku di C, panjang sisi AC = 5 cm dan panjang sisi BC = 12 cm. Panjang sisi AB adalah A. 13 cmB. 17 cmC. 25 cmD. 144 cmE. 18 cm Jawaban A 8. Persamaan lingkaran yang melalui titik –4,4, –1,1, dan 2,4 adalah…. a. x2 + y2 – 2x + 8y + 8 = 0b. x2 + y2 + 2x – 8y + 8 = 0c. x2 – y2 + 2x – 8y + 8 = 0d. x2 + y2 – 2x – 8y + 8 = 0e. x2 + y2 + 2x – 8y – 8 = 0 Jawaban B 9. Persamaan lingkaran dengan pusat P – 2, 5 dan melalui titik T 3, 4 adalah…. a. x + 2 2 + y – 5 2 = 26 b. x – 3 2 + y + 5 2 = 36 c. x + 2 2 + y – 5 2 = 82 d. x – 3 2 + y + 5 2 = 82 e. x + 2 2 + y + 5 2 = 82 Jawaban A 10. Syarat agar garis ax + y = 0 menyinggung lingkaran denganpusat –1,3 dan jari-jari 1 adalah a = ... A. 2/3B. 3/4C. 4/3D. 3/2E. 2/1 Jawaban B 11. Lingkaran M mempunyai titik pusat P2, 3 dan memotongsumbu X di titik R5, 0. Persamaan garis singgung lingkarandi titik R adalah ... A. x – y = 5B. x + y = 5C. x – 2y = 5D. 2x – y = 5E. 2x + y = 5 Jawaban A 12. Persamaan garis singgung lingkaran x2 + y2 – 6x + 4y – 12 = 0 di titik 7, 1 adalah ... A. 4x + 3y – 55 = 0B. 4x + 3y – 31 = 0C. 4x – 5y – 40 = 0D. 4x – 3y – 31 = 0E. 4x – y – 35 = 0 Jawaban E 13. Dalam segitiga siku-siku ABC dengan sudut siku di C, panjang sisi AC = 5 cm dan panjang sisi BC = 12 cm. Panjang sisi AB adalah A. 13 cmB. 17 cmC. 25 cmD. 144 cmE. 125 cm Jawaban A 14. Jumlah calon jamaah haji disuatu kabupaten pada tahun 2021 adalah orang. Jika setiap tahun bertambah 2 kali lipat dari tahun sebelumnya maka banyak calon jamaah haji pada tahun 2025 adalah.... A. orangB. orangC. orangD. orangE. 31. 000 orang Jawaban D 15. Fungsi f x dibagi x – 1 adalah 3, sedangkan bila dibagi x – 2 sisanya adalah 4. Jika f x dibagi x2 – 3x + 2, maka sisanya. A. 2x + 2B. -x – 2C. X + 2D. X -2E. –x + 2 Jawaban C 16. Pola bilangan untuk barisan 44, 41, 38, 35, 32, … memenuhi rumus … A. Un = 44 – nB. Un = 46 – 2nC. Un = 48 – 4nD. Un = 3n + 41E. Un = 47 – 3n Jawaban E 17. Dalam barisan aritmatika, suku pertama a₁ adalah 3 dan beda d antara suku-suku adalah 2. Suku ke-10 a₁₀ dalam barisan tersebut adalah A. 19B. 20C. 21D. 22E. 26 Jawaban D 18. Suku pertama dan kelima barisan geometri berturut-turut adalah 5 da 80. Suku ke-9 barisan tersebut adalah.... A. 90B. 405C. 940D. Jawaban D 19. Persamaan garis sejajar dengan garis 2x + y – 2 = 0 dan melalui titik − adalah A. 2x + y + 1 = 0B. 2x + y – 1 = 0C. 2x – y – 1 = 0D. −2x + y + 1 = 0E. y = 2x – 9 Jawaban A 20. Perkalian x4 – 3×2 + kapak + b jika dibagi dengan x2 – 3x – 4 sisanya adalah 2x + 5, maka nilai a dan b. A. A = -35, b = 40B. A = -35, b = -40C. A = 35, b = 40D. A = 40, b = -35E. A = -40, b = -35 Jawaban D Telah tayang di Baca Berita Lainnya di Google News Baca Berita Terbaru Tribun Manado KLIK INI belajar matematika SMA dari 40 Soal dan Pembahasan Simulasi Ujian Sekolah Matematika SMA IPA dari soal Simulasi UNBK Matematika SMA IPA Paket F Calon guru belajar matematika dasar SMA lewat Soal dan Pembahasan Latihan Ujian Sekolah US Matematika SMA Tahun 2023 Model Soal F. Ujian Sekolah Matematika SMA adalah Ujian yang diselenggarakan oleh Satuan Pendidikan ujian sekolah bertujuan menilai pencapaian standar kompetensi lulusan untuk mata pelajaran matematika SMA. Ujian sekolah juga tidak semata-mata hanya tes tertulis, tetapi dapat juga berbentuk portofolio, penugasan, dan/atau bentuk kegiatan lain yang ditetapkan Satuan Pendidikan sesuai dengan kompetensi yang diukur berdasarkan Standar Nasional Pendidikan. Jika tertarik untuk melihat soal-soal latihan Ujian Sekolah US untuk mata pelajaran lain, silahkan disimak pada catatan Kumpulan Contoh Soal Ujian Sekolah US SMA Kelas XII Semua Mata Pelajaran. Pembahasan Soal Latihan Ujian Sekolah US Matematika SMA Soal Ujian Sekolah US Matematika SMA yang diujikan di sekolah terus berkembang seiring dengan mengikuti perkembangan kurikulum dan teknologi. Tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal yang sudah dujikan pada saat simulasi UNBK Matematika SMA IPA tahun 2019 paket B ini sangat baik dijadikan sebagai bahan persiapan atau latihan dalam bernalar untuk mengikuti ujian sekolah matematika SMA pada tahun ini atau persiapan Seleksi Masuk Perguruan Tinggi Negeri. 1. Contoh Soal US Matematika SMA 2023Diketahui persamaan kuadrat $2x^{2}-6-mx+m=0$ mempunyai dua akar real berbeda. Batasan nilai $m$ yang memenuhi adalah... $A\ m \lt -18\ \text{atau}\ m \gt 2 $ $B\ m \lt -18\ \text{atau}\ m \gt -2 $ $C\ m \lt 2\ \text{atau}\ m \gt 18 $ $D\ 2 \lt m \lt 18 $ $E\ -18 \lt m \lt -2 $ Alternatif PembahasanUntuk persamaan kuadrat yang mempunyai dua akar real beda maka diskriminan lebih dari nol. $\begin{align} 2x^{2}-6-mx+m & = 0 \\ 2x^{2}+-6+mx+m & = 0 \\ D & \gt 0 \\ b^{2}-4ac & \gt 0 \\ -6+m^{2}-42m& \gt 0 \\ m^{2}-12m+36-8m & \gt 0 \\ m^{2}-20m+36 & \gt 0 \\ m-18m-2 & \gt 0 \\ [m=18] & [m=2] \\ m \lt 2\ \text{atau}\ m \gt 18 \end{align}$ *Jika masih kesulitan, silahkan disimak Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat $\therefore$ Pilihan yang sesuai adalah $C\ m \lt 2\ \text{atau}\ m \gt 18$ 2. Contoh Soal US Matematika SMA 2023Bentuk sederhana dari $\dfrac{log\ p^{3}q-2\ log\ q + log\ p^{2}q^{6}}{3\ log\ pq}=\cdots$ $A\ \dfrac{5}{2} log\ pq $ $B\ \dfrac{2}{5} log\ pq $ $C\ \dfrac{2}{5} $ $D\ \dfrac{3}{5} $ $E\ \dfrac{5}{3} $ Alternatif PembahasanUntuk menyederhanakan bentuk aljabar pada soal di atas, kita perlu mengetahui sifat-sifat dasar logaritma. $\begin{align} & \dfrac{log\ p^{3}q-2\ log\ q + log\ p^{2}q^{6}}{3\ log\ pq} \\ & = \dfrac{log\ p^{3}q- log\ q^{2} + log\ p^{2}q^{6}}{3\ log\ pq} \\ & = \dfrac{log\ \dfrac{p^{3}q}{q^{2}}+ log\ p^{2}q^{6}}{3\ log\ pq} \\ & = \dfrac{log\ p^{3}q^{-1}+ log\ p^{2}q^{6}}{3\ log\ pq} \\ & = \dfrac{log\ \left p^{3}q^{-1}\cdot p^{2}q^{6} \right }{3\ log\ pq} \\ & = \dfrac{log\ \left pq\right ^{5}}{3\ log\ pq} \\ & = \dfrac{5\ log\ pq}{3\ log\ pq} \\ & = \dfrac{5}{3} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ \dfrac{5}{3}$ 3. Contoh Soal US Matematika SMA 2023Perhatikan grafik fungsi kuadrat berikut. Grafik tersebut memotong sumbu $X$ di titik... $A\ -2,0\ \text{dan}\ 6,0 $ $B\ -1,0\ \text{dan}\ 6,0 $ $C\ -1,0\ \text{dan}\ 5,0 $ $D\ 1,0\ \text{dan}\ 5,0 $ $E\ 1,0\ \text{dan}\ 6,0 $ Alternatif PembahasanUntuk menentukan titik potong kurva dengan sumbu $X$, maka kita perlu ketahui persamaan kurva. Kurva pada gambar melalui titik puncak $2,9$ dan sebuah titik sembarang $0,5$. Jika diketahui Titik Puncak $x_{p},y_{p}$ dan sebuah titik sembarang $x,y$ maka Fungsi Kuadrat adalah $\begin{align} y & = a\left x -x_{p}\right^{2}+y_{p} \\ 5 & = a\left 0 -2\right^{2}+9 \\ 5-9 & = 4a \\ \dfrac{-4}{4} & = a \\ -1 & = a \end{align}$ Persamaan kurva $\begin{align} y & = a\left x -x_{p}\right^{2}+y_{p} \\ y & = -1 \left x - 2 \right^{2}+9 \\ y & = -1 \left x^{2} - 4x+4 \right+9 \\ y & = -x^{2} + 4x-4+9 \\ y & = -x^{2} + 4x+5 \\ \end{align}$ Memotong sumbu $X$, maka $y=0$ $\begin{align} 0 & = -x^{2} + 4x+5 \\ 0 & = x^{2} - 4x-5 \\ 0 & = x-5x+1 \\ & x=5\ \text{atau}\ x=-1 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ -1,0\ \text{dan}\ 5,0$ 4. Contoh Soal US Matematika SMA 2023Alas suatu kotak tanpa tutup persegi dengan panjang sisi $x\ cm$ dan tinggi $t\ cm$, seta volume $ cm^{3}$. Luas permukaan kotak minimum adalah... $A\ cm^{2} $ $B\ 800\ cm^{2} $ $C\ 600\ cm^{2} $ $D\ 400\ cm^{2} $ $E\ 200\ cm^{2} $ Alternatif PembahasanVolume kotak adalah luas alas $\times$ tinggi, dimana alas kotak berupa persegi dengan panjang sisi $x$ dan tinggi kotak adalah sebesar $t$, sebagai ilustrasi jika kotak kita buka akan tampak pada gambar berikut. Dari apa yang kita peroleh diatas, volume kotak dapt kita hitung sebagai berikut; $\begin{align} V & = x^{2} \times t \\ 4000 & = x^{2} \times t \\ \dfrac{4000}{x^{2}} & = t \end{align}$ Luas permukaan kotak adalah $\begin{align} L & = x^{2} + 4 \times xt \\ & = x^{2} + 4 \times x \left \dfrac{ \right \\ & = x^{2} + \dfrac{ \\ \end{align}$ Biaya minimum ketika $\begin{align} L'x & = 0 \\ 2x - \dfrac{ & = 0 \\ 2x & = \dfrac{ \\ 2x^{3} & = \\ x^{3} & = \\ x & = 20 \end{align}$ Luas minimum saat $x=20$ $\begin{align} Lx & = x^{2} + \dfrac{ \\ L20 & = 20^{2} + \dfrac{ \\ & = 400 + 800 \\ & = \end{align}$ $\therefore$ Pilihan yang sesuai adalah $A\ cm^{2}$ 5. Contoh Soal US Matematika SMA 2023Fungsi $fx=2x^{3}-9x^{2}+12x$ naik pada interval... $A\ -2 \lt x \lt 1 $ $B\ -2 \lt x \lt -1 $ $C\ 1 \lt x \lt 2 $ $D\ x \lt -1\ \text{atau}\ x \gt 2 $ $E\ x \lt 1\ \text{atau}\ x \gt 2 $ Alternatif PembahasanSyarat suatu fungsi akan naik adalah turunan pertama lebih dari nol, turunan pertama $fx$ adalah $f'x=6x^{2}-18x+12$ $ \begin{align} f'x & \gt 0 \\ x^{2}-3x+2 & \gt 0 \\ x-1x-2 & \gt 0 \\ \left[x=1 \right] &\ \left[x=2 \right] \\ x \lt 1\ \text{atau}\ x \gt 2 & \end{align}$ *Jika masih kesulitan silahkan disimak Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat $\therefore$ Pilihan yang sesuai adalah $E\ x \lt 1\ \text{atau}\ x \gt 2$ 6. Contoh Soal US Matematika SMA 2023Persamaan lingkaran yang berpusat di $P2,6$ dan melalui titik $2,8$ adalah... $A\ x^{2}+y^{2}+4x-12y-40=0 $ $B\ x^{2}+y^{2}-4x+12y+36=0 $ $C\ x^{2}+y^{2}+4x+12y-40=0 $ $D\ x^{2}+y^{2}-4x-12y+36=0 $ $E\ x^{2}+y^{2}-10x-10y+40=0 $ Alternatif PembahasanUntuk membentuk persamaan lingkaran setidaknya ada 2 hal dasar harus kita ketahui, yaitu titik pusat dan jari-jari lingkaran. Pada soal disampaikan titik pusat lingkaran $P2,6$ dan lingkaran melalui titik $2,8$, artinya jari-jari lingkaran adalah jarak titik pusat ke titik yang dilalui lingkaran. $ \begin{align} r & = \sqrt{y_{2}-y_{1}^{2}+x_{2}-x_{1}^{2}} \\ & =\sqrt{8-6^{2}+2-2^{2}} \\ & =\sqrt{4+0} \\ & =2 \end{align} $ Persamaan lingkaran engan pusat $a,b$ dan jari-jari $r$ adalah $ \begin{align} x-a^{2}+y-b^{2}& =r^{2} \\ x-2^{2}+y-6^{2}& =2^{2} \\ x^{2}-4x+4+y^{2}-12y+36 & =4 \\ x^{2}+y^{2}-4x-12y+36 & = 0 \end{align} $ $\therefore$ Pilihan yang sesuai adalah $D\ x^{2}+y^{2}-4x-12y+36=0$ 7. Contoh Soal US Matematika SMA 2023Salah satu persamaan garis singgung lingkaran $x^{2}+y^{2}-2x+4y=0$ yang tegak lurus dengan garis $x+2y+4=0$ adalah... $A\ 2x+y-9=0 $ $B\ 2x+y+9=0 $ $C\ 2x-y-9=0 $ $D\ 2x-y-1=0 $ $E\ 2x+y+1=0 $ Alternatif PembahasanPersamaan garis singgung pada lingkaran yang dicari pada soal adalah PGS lingkaran jika diketahui gradiennya karena garis singgung lingkaran tegak lurus dengan garis $x+2y-6=0$. Garis singgung lingkaran tegak lurus dengan garis $x+2y+4=0$ maka gradien garis $x+2y+4=0$ $m=-\frac{1}{2}$ dikali gradien garis singgung lingkaran adalah $-1$. $m \times\ -\frac{1}{2}=-1$ $m =2$ Persamaan Garis Singgung Lingkaran $ x^{2} + y^{2} + Ax + By + C = 0$ jika diketahui gradiennya adalah $y - b = mx-a \pm r \sqrt{1 + m^{2}}$. Dari persamaan lingkaran $x^{2}+y^{2}-2x+4y=0$ kita peroleh pusat lingkaran yaitu $1,-2$ dan $r = \sqrt{a^{2} + b^{2} - C}=\sqrt{1 + 4}=\sqrt{5}$. $\begin{align} y - b & = mx-a \pm r \sqrt{1 + m^{2}} \\ y +2 & = 2x-1 \pm \sqrt{5} \sqrt{1 + 2^2} \\ y +2 & = 2x-2 \pm \sqrt{5} \sqrt{5} \\ y +2 & = 2x-2 \pm 5 \\ y & = 2x-4 \pm 5 \\ \text{PGS 1 }y & = 2x-4+5 \\ 2x-y+1 & = 0 \\ \text{PGS 2 }y & = 2x-4-5 \\ 2x-y-9 & = 0 \end{align} $ *Jika tertarik untuk berlatih lagi tentang Matematika Dasar Lingkaran [Soal SBMPTN dan Pembahasan] $\therefore$ Pilihan yang sesuai adalah $C\ 2x-y-9=0$ 8. Contoh Soal US Matematika SMA 2023Persamaan garis singgung kurva $y=2x^{2}-x+1$ dan sejajar dengan garis $5x+y=6$ adalah... $A\ 5x-y+1=0 $ $B\ 5x-y-1=0 $ $C\ 5x+y+1=0 $ $D\ x+5y+1=0 $ $E\ x+5y-1=0 $ Alternatif PembahasanGaris singgung kurva sejajar dengan garis $x-y=5$ maka gradien garis $5x+y=6$ $m=-5$ sama dengan gradien garis singgung kurva yaitu $m=-5$. Untuk mendapatkan persamaan garis singgung kurva kita perlu sebuah titik singgung pada kurva dan gradien garis. Gradien persamaan garis singgung pada kurva $y=2x^{2}-x+1$ gradiennya adalah $m=-5$, sehingga $\begin{align} y & = 2x^{2}-x+1 \\ m=y' & = 4x-1 \\ -5 & = 4x-1 \\ -4 & = 4x \\ x & = -1 \\ y & = 2x^{2}-x+1 \\ y & = 2-1^{2}-1+1 \\ y & = 4 \end{align} $ Persamaan garis singgung kurva melalui titik $-1,4$ dengan gradien $m=-5$ $\begin{align} y-y_{1} & = m x-x_{1} \\ y-4 & = -5 x-1 \\ y-4 & = -5 x+1 \\ y & = -5x-5+4 \\ y & = -5x-1 \end{align} $ *Jika tertarik untuk berlatih lagi tentang Matematika Dasar Persamaan Garis [Soal SBMPTN dan Pembahasan] $\therefore$ Pilihan yang sesuai adalah $C\ 5x+y+1=0$ 9. Contoh Soal US Matematika SMA 2023Diketahui fungsi $fx=2x^{3}-4$ dan $gx=x-3$. Jika $hx=fx \cdot gx$, turunan pertama dari $hx$ adalah $h'x=\cdots$ $A\ 2x^{3}+18x^{2}+4x-4 $ $B\ 6x^{3}-18x^{2}-4x $ $C\ 6x^{3}-12x^{2}+6x+4 $ $D\ 8x^{3}-18x^{2}+-4 $ $E\ 8x^{3}-18x^{2}-4x+8 $ Alternatif PembahasanTurunan pertama dari $hx=fx \cdot gx$ adalah $ \begin{align} h'x & = f'x \cdot gx + fx \cdot g'x \\ & =\left 6x^{2} \right \left x-3 \right+\left 2x^{3}-4 \right\left 1 \right \\ & = 6x^{3}-18x^{2} + 2x^{3}-4 \\ & = 8x^{3}-18x^{2} -4 \end{align} $ *Jika tertarik untuk berlatih lagi tentang Matematika Dasar Turunan [Soal SBMPTN dan Pembahasan] $\therefore$ Pilihan yang sesuai adalah $D\ 8x^{3}-18x^{2}-4$ 10. Contoh Soal US Matematika SMA 2023Diketahui $fx=2x+3$ dan $fogx=17-10x$. Nilai dari $g^{-1}2=\cdots$ $A\ 2 $ $B\ \dfrac{9}{5} $ $C\ 1 $ $D\ -1 $ $E\ -\dfrac{9}{5} $ Alternatif PembahasanBerdasarkan informmasi pada soal, diketahui $fogx=17-10x$ maka $ \begin{align} f \left gx \right & = 17-10x \\ 2 g \left x \right +3 & = 17-10x \\ 2 g \left x \right & = 17-10x-3 \\ g \left x \right & = \dfrac{14-10x}{2} \end{align} $ Invers fungsi $gx$ adalah $g^{-1}x$, salah satu cara menentukan $g^{-1}x$ yaitu $ \begin{align} y & = \dfrac{14-10x}{2} \\ 2y & = 14-10x \\ 10x & = 14-2y \\ x & = \dfrac{14-2y}{10} \\ g^{-1}x & = \dfrac{14-2x}{10} \\ g^{-1}2 & = \dfrac{14-22}{10} \\ & = 1 \end{align} $ *Jika tertarik untuk berlatih lagi tentang Matematika Dasar FKFI [Soal SBMPTN dan Pembahasan] $\therefore$ Pilihan yang sesuai adalah $C\ 1$ 11. Contoh Soal US Matematika SMA 2023Tiga tahun yang lalu, umur Didin $20$ tahun lebih tua dari umur Fadhil. Sedangkan lima tahun yang kan datang, umur Didin menjadi $3$ kali umur fadhil. Jumlah umur mereka sekarang adalah... $A\ 45\ \text{tahun} $ $B\ 40\ \text{tahun} $ $C\ 30\ \text{tahun} $ $D\ 25\ \text{tahun} $ $E\ 20\ \text{tahun} $ Alternatif PembahasanKita misalkan umur Didin dan Fadhil saat ini adalah $\text{Didin}=D$ dan $\text{Fadhil}=F$. Untuk tiga tahun yang lalu umur mereka adalah $D-3$ dan $F-3$, berlaku $ \begin{align} D-3 & = F-3+20 \\ D-F & = 20\ \text{ \end{align} $ Untuk lima tahun yang akan datang umur mereka adalah $D+5$ dan $F+5$, berlaku $ \begin{align} D+5 & = 3F+5 \\ D+5 & = 3F+15 \\ D-3F & = 15-5 \\ D-3F & = 10\ \text{ \end{align} $ Dari dan kita peroleh; $\begin{array}{cccc} D-F = 20 & \\ D-3F = 10 & - \\ \hline & 2F = 10 \\ & F = 5 \\ & D = 25 \\ \end{array} $ Jumlah umur mereka sekarang $25+5=30$ $\therefore$ Pilihan yang sesuai adalah $C\ 30$12. Contoh Soal US Matematika SMA 2023Di sebuah toko, Dani membayar $ untuk membeli $3$ jarum dan $4$ benang sedangkan Naili membayar $ untuk pembelian $6$ jarum dan $2$ benang. Jika Nafisa membeli $1$ jarum dan $1$ benang, ia harus membayar sebesar... $A\ Rp540,00 $ $B\ Rp720,00 $ $C\ Rp800,00 $ $D\ Rp960,00 $ $E\ $ Alternatif PembahasanDengan memakai pemisalan $\text{harga 1 jarum}=a$ dan $\text{harga 1 benang}=b$, Harga $3$ jarum dan $4$ benang adalah $ $3a+4b= * Harga $6$ jarum dan $2$ benang adalah $ $6a+2b= * $\begin{array}{cccc} 3a+4b = & \\ 6a+2b = & \\ \hline \end{array} $ Dari dan kita peroleh; $\begin{array}{cccc} 3a+4b = & \times 2 & 6a+8b = & \\ 6a+2b = & \times 1 & 6a+2b = & - \\ \hline & & 6b = & \\ & & b = \frac{ & \\ & & b = 300 & \end{array} $ Untuk $b = 300$ maka $\begin{array}{cccc} 3a+4b &= \\ 3a+4300 &= \\ 3a+ &= \\ 3a &= \\ a &= 500 \end{array} $ Harga $1$ jarum dan $1$ benang adalah $500+300=800$ $\therefore$ Pilihan yang sesuai adalah $C\ Rp800,00$ 13. Contoh Soal US Matematika SMA 2023Diketahui matriks $A=\begin{pmatrix} -1 & 3\\ 2 & 0 \end{pmatrix}$ dan $B=\begin{pmatrix} 4 & 3\\ 1 & 2 \end{pmatrix}$. Invers dari matriks $AB$ adalah $AB^{-1}=\cdots$ $A\ \begin{pmatrix} \dfrac{-6}{30} & \dfrac{-3}{10} \\ \dfrac{-8}{30} & \dfrac{1}{30} \end{pmatrix} $ $B\ \begin{pmatrix} \dfrac{-6}{30} & \dfrac{1}{10} \\ \dfrac{8}{30} & \dfrac{1}{30} \end{pmatrix} $ $C\ \begin{pmatrix} \dfrac{-6}{30} & \dfrac{3}{30}\\ \dfrac{8}{30} & \dfrac{1}{30} \end{pmatrix} $ $D\ \begin{pmatrix} \dfrac{6}{30} & \dfrac{1}{10} \\ \dfrac{8}{30} & \dfrac{-1}{30} \end{pmatrix} $ $E\ \begin{pmatrix} \dfrac{6}{30} & \dfrac{1}{10} \\ \dfrac{8}{30} & \dfrac{1}{30} \end{pmatrix} $ Alternatif Pembahasan$\begin{align} AB &= \begin{pmatrix} -1 & 3\\ 2 & 0 \end{pmatrix} \begin{pmatrix} 4 & 3\\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -4+3 & -3+6\\ 8+0 & 6+0 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 3\\ 8 & 6 \end{pmatrix} \end{align} $ $\begin{align} AB &= \begin{pmatrix} -1 & 3\\ 8 & 6 \end{pmatrix} \\ AB^{-1} &= \dfrac{1}{ad-bc}\begin{pmatrix} d & -b\\ -c & a \end{pmatrix} \\ &= \dfrac{1}{-6-24}\begin{pmatrix} 6 & -3\\ -8 & -1 \end{pmatrix} \\ &= \dfrac{1}{-30} \begin{pmatrix} 6 & -3\\ -8 & -1 \end{pmatrix} \\ &= \begin{pmatrix} \dfrac{-6}{30} & \dfrac{3}{30}\\ \dfrac{8}{30} & \dfrac{1}{30} \end{pmatrix} \end{align} $ *Jika tertarik untuk berlatih lagi tentang Matematika Dasar Matriks [Soal SBMPTN dan Pembahasan] $\therefore$ Pilihan yang sesuai adalah $C\ \begin{pmatrix} \dfrac{-6}{30} & \dfrac{3}{30}\\ \dfrac{8}{30} & \dfrac{1}{30} \end{pmatrix}$14. Contoh Soal US Matematika SMA 2023Nilai $N$ peserta pelatihan di suatu kegiatan dihitung berdasarkan kehadiran $H$ selama pelatihan dengan fungsi $NH=\dfrac{2H+107}{3}$. Sedangkan kehadiran dihitung berdasarkan banyaknya modul $M$ kegiatan yang diikuti peserta selama pelatihan dengan fungsi $HM=3M+2$. Jika Hadi adalah salah satu peserta pelatihan tersebut dan mengikuti $75\%$ dari 20 modul kegiatan yang disediakan, nilai yang diperoleh Hadi adalah... $A\ 70 $ $B\ 69 $ $C\ 68 $ $D\ 67 $ $E\ 66 $ Alternatif PembahasanBanyak modul yang dikuti Hadi adalah $70\%$ dari $20$ sehingga banyak modul yang diikuti Hadi adalah $15$ atau $M=15$. Untuk $M=15$, berdasarkan fungsi $HM=3M+2$, maka $H15=315+2=47$. Untuk $H=47$, berdasarkan fungsi $NH=\dfrac{2H+107}{3}$, maka $N47=\dfrac{247+107}{3}=\dfrac{201}{3}=67$ $\therefore$ Pilihan yang sesuai adalah $D\ 67$15. Contoh Soal US Matematika SMA 2023Diketahui segitiga siku-siku $PQR$ dengan $cos\ R=\dfrac{15}{17}$ $P$ dan $R$ sudut lancip Nilai dari $1+ sec\ R1-sec\ P$ adalah... $A\ \dfrac{12}{5} $ $B\ \dfrac{3}{5} $ $C\ -\dfrac{3}{5} $ $D\ -\dfrac{11}{5} $ $E\ -\dfrac{12}{5} $ Alternatif PembahasanSebagai ilustrasi segitiga siku-siku $KLM$ dapat digambarkan sebagai berikut Dengan menggunkan teorema phytagoras dapat kita hitung, $PQ$ yaitu $\begin{align} PQ^{2} & = PR^{2}- QR^{2} \\ & = 17^{2}- 15^{2} \\ & = 289 - 225 \\ & = 64 \\ PQ & = \sqrt{64}=8 \end{align}$ $\begin{align} & \left 1+ sec\ R \right \left 1-sec\ P \right \\ & = \left 1+ sec\ R \right \left 1-sec\ P \right \\ & = \left 1+ \dfrac{1}{cos\ R} \right \left 1- \dfrac{1}{cos\ P} \right \\ & = \left 1+ \dfrac{17}{15} \right \left 1- \dfrac{17}{8} \right \\ & = \left \dfrac{32}{15} \right \left\dfrac{-9}{8} \right \\ & = \dfrac{-12}{5} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ -\dfrac{12}{5}$ 16. Contoh Soal US Matematika SMA 2023Seorang siswa diberikan tugas untuk mengukur tinggi sebuah gedung dengan menggunakan klinometer. Pada awal berdiri melihat ujung atas gedung terlihat jarum jam pada $45^{\circ}$. Kemudian mendekati gedung sejauh $20$ meter dan terlihat pada klinometer dengan sudut $60^{\circ}$. Tinggi gedung tersebut adalah... $A\ 30 + 30\sqrt{3}\ m $ $B\ 30 + 10\sqrt{3}\ m $ $C\ 10 + 10\sqrt{3}\ m $ $D\ 20 + 5\sqrt{3}\ m $ $E\ 20 + \sqrt{3}\ m $ Alternatif PembahasanUntuk mempermudah istilah pada gambar, titik-titik sudut kita beri nama sebagai berikut; Dengan menggunakan perbandingan trigonometri kita peroleh $\begin{align} tan\ 45 & = \dfrac{CD}{AC} \\ 1 & = \dfrac{CD}{AC} \\ AC & = CD \\ tan\ 60 & = \dfrac{CD}{BC} \\ \sqrt{3} & = \dfrac{CD}{BC} \\ BC \sqrt{3} & = CD \end{align}$ $\begin{align} AC & = BC \sqrt{3} \\ BC+20 & = BC \sqrt{3} \\ BC \sqrt{3}-BC & = 20 \\ BC \sqrt{3} - 1 & = 20 \\ BC & = \dfrac{20}{\sqrt{3} - 1} \times \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1} \\ & = \dfrac{20\sqrt{3} + 20}{3 - 1} \\ & = \dfrac{20\sqrt{3} + 20}{2} \\ & = 10\sqrt{3} + 10 \end{align}$ Tinggi gedung adalah $CD=BC+20=10 + 10\sqrt{3}+20=30 + 10\sqrt{3}$ $\therefore$ Pilihan yang sesuai adalah $B\ 30 + 10\sqrt{3}\ m$17. Contoh Soal US Matematika SMA 2023Diketahui kubus $ Sudut antara garis $SV$ dan garis $PT$ adalah... $A\ 30^{\circ} $ $B\ 45^{\circ} $ $C\ 60^{\circ} $ $D\ 90^{\circ} $ $E\ 145^{\circ} $ Alternatif PembahasanUntuk mempermudah melihat sudut kedua garis pada kubus, kita perhatikan gambar berikut ini; Dari gambar dapat kita lihat bahwa garis $SV$ dan garis $PT$ adalah garis bersilangan. Untuk menemukan sudut kedua garis bersilangan, salah satu garis harus kita geser sejajar. Kita pilih garis $SV$ sampai ke $PU$, sehingga sudut $PU$ dan $PT$ adalah sudut yang akan kita cari. Dengan menggunakan bantuan persegi $PQUT$ dimana $PU$ adalah diagonal persegi sehingga sudut antara $PU$ dan $PT$ adalah $45^{\circ}$ $\therefore$ Pilihan yang sesuai adalah $B\ 45^{\circ}$18. Contoh Soal US Matematika SMA 2023Setelah maka siang, Joni meninggalkan kantin menuju kelasnya yang terletak di gedung $A$. Dari kantin, joni harus menempuh $20\ m$ ke utara dan $15\ m$ ke barat menuju ke gedung $A$. Sesampainya di gedung tersebut, joni harus naik $10\ m$ ke atas karena kelas Joni berada di lantai dua. Jarak antara kantin ke kelas Joni adalah... $A\ 45\ m $ $B\ 35\ m $ $C\ 25\sqrt{21}\ m $ $D\ 5\sqrt{29}\ m $ $E\ 5\ m $ Alternatif PembahasanLintasan berjalan Joni jika kita ilustrasikan kurang lebih seperti berikut ini Dari gambar dapat kita lihat bahwa lintasan Joni berada pada rangka sebuah balok, maka jarak Kantin ke Kelas dapat kita hitung dengan menggunakan teorema phytagoras. Pada segitiga $KaUB$ berlaku $\begin{align} KaB^{2} & = KaU^{2}+UB^{2} \\ & = 20^{2}+15^{2} \\ & = 400 +225 \\ & = 625 \\ KaB & = 25 \end{align}$Pada segitiga $KaBKe$ berlaku $\begin{align} KaKe{2} & = KaB^{2}+BKe^{2} \\ & = 25^{2}+10^{2} \\ & = 625 +100 \\ & = 725 \\ KaKe & = \sqrt{725}=5\sqrt{29} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $D\ 5\sqrt{29}\ m$ 19. Contoh Soal US Matematika SMA 2023Diketahui segitiga $ABC$ dengan titik sudut $A2,7$, $B5,3$, dan $C-1,4$. Jika segitiga $ABC$ dirotasi sejauh $180^{\circ}$ pada pusat rotasi $2,4$, koordinat bayangan segitiga $ABC$ adalah... $A\ A'2,-1,\ B'-1,5,\ C'-5,-4 $ $B\ A'2,1,\ B'-1,5,\ C'5,4 $ $C\ A'2,2,\ B'-1,1,\ C'-5,4 $ $D\ A'2,-1,\ B'-1,-5,\ C'-5,4 $ $E\ A'2,-1,\ B'-1,5,\ C'5,4 $ Alternatif PembahasanBayangan titik $x,y$ yang di rotasi dirotasi sejauh $\theta$ dengan pusat $a,b$ kita tentukan dengan matriks; $\begin{pmatrix} x'\\ y' \end{pmatrix} =\begin{pmatrix} cos\ \theta & -sin\ \theta\\ sin\ \theta & cos\ \theta \end{pmatrix}\begin{pmatrix} x-a\\ y-b \end{pmatrix}+\begin{pmatrix} a\\ b \end{pmatrix}$ Bayangan titik $x,y$ yang di rotasi dirotasi sejauh $180^{\circ}$ dengan pusat $2,4$ adalah; $\begin{pmatrix} x'\\ y' \end{pmatrix} =\begin{pmatrix} cos\ 180 & -sin\ 180\\ sin\ 180 & cos\ 180 \end{pmatrix}\begin{pmatrix} x-2\\ y-4 \end{pmatrix}+\begin{pmatrix} 2\\ 4 \end{pmatrix}$ $\begin{pmatrix} x'\\ y' \end{pmatrix} =\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} x-2\\ y-4 \end{pmatrix}+\begin{pmatrix} 2\\ 4 \end{pmatrix}$ Bayangan titik $A2,7$ $\begin{pmatrix} x'\\ y' \end{pmatrix} =\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} 2-2\\ 7-4 \end{pmatrix}+\begin{pmatrix} 2\\ 4 \end{pmatrix}$ $\begin{pmatrix} x'\\ y' \end{pmatrix} =\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} 0\\ 3 \end{pmatrix}+\begin{pmatrix} 2\\ 4 \end{pmatrix}$ $\begin{pmatrix} x'\\ y' \end{pmatrix} =\begin{pmatrix} 0+2\\ -3+4 \end{pmatrix}=\begin{pmatrix} 2\\ 1 \end{pmatrix}$ Dengan cara yang sama bayangan titik $B5,3$ adalah $B'-1,5$ dan bayangan titik $C-1,4$ adalah $C'5,4$ $\therefore$ Pilihan yang sesuai adalah $B\ A'2,1,\ B'-1,5,\ C'5,4$20. Contoh Soal US Matematika SMA 2023Nilai dari $ \underset{x \to \infty}{lim} \left \sqrt{x^2+7x-5}- x-5 \right $ adalah... $A\ -2 $ $B\ -\dfrac{3}{2} $ $C\ 1 $ $D\ \dfrac{1}{2} $ $E\ \dfrac{3}{2} $ Alternatif Pembahasan$ \begin{align} & \underset{x \to \infty}{lim} \left \sqrt{x^2+7x-5}- x-5\right \\ & = \underset{x \to \infty}{lim} \left \sqrt{x^2+7x-5}- \left x+5 \right \right \\ & = \underset{x \to \infty}{lim} \left \sqrt{x^2+7x-5}-\sqrt{ \left x+5 \right ^{2}} \right \\ & = \underset{x \to \infty}{lim} \left \sqrt{x^2+7x-5}-\sqrt{x^2+10x+25} \right \\ & = \frac{b-q}{2\sqrt{a}} \\ & = \frac{7-10}{2\sqrt{1}} \\ & = \frac{-3}{2} \end{align} $ *Jika tertarik untuk berlatih lagi tentang Matematika Dasar Limit Takhingga [Soal SBMPTN dan Pembahasan] $\therefore$ Pilihan yang sesuai adalah $B\ -\dfrac{3}{2}$ 21. Contoh Soal US Matematika SMA 2023Tanti ingin membuat hiasan di kamarnya dari selembar kertas yang berbentuk segitiga sama sisi dengan panjang sisinya $12\ cm$. Untuk membuat hiasan tersebut, pada awalnya Tanti mewarnai seluruh permukaan segitiga dengan warna merah dan tahap demi setahap mewarnai bagian di dalamnya tersebut dengan warna putih seperti yang ditunjukkan pada gambar berikut Panjang sisi dari segitiga warna putih terpendek adalah... $A\ 6\ cm $ $B\ 3\sqrt{3} $ $C\ 3\ cm $ $D\ 1\dfrac{1}{2} cm $ $E\ \dfrac{3}{4}\ cm $ Alternatif PembahasanPanjang sisi segitiga yang pertama terbesar adalah $12\ cm$ dan luasnya adalah $L=\dfrac{1}{2} 1212 sin 60$, $L=36\sqrt{3}$ Luas segitiga yang kedua lebih kecil dari yang pertama adalah $L=\dfrac{1}{4} 36\sqrt{3}=9\sqrt{3}$ sehingga berlaku $\begin{align} 9\sqrt{3} & = \dfrac{1}{2} ss sin 60 \\ 9\sqrt{3} & = \dfrac{1}{2} ss \dfrac{1}{2} \sqrt{3} \\ 36 & = s^{2} \\ 6 & = s \end{align}$ Luas segitiga yang ketiga lebih kecil dari yang kedua adalah $L=\dfrac{1}{4} 9\sqrt{3}=\dfrac{9}{4} \sqrt{3}$ sehingga berlaku $\begin{align} \dfrac{9}{4} \sqrt{3} & = \dfrac{1}{2} ss sin 60 \\ \dfrac{9}{4} \sqrt{3} & = \dfrac{1}{2} ss \dfrac{1}{2} \sqrt{3} \\ \dfrac{36}{4} & = s^{2} \\ 3 & = s \end{align}$ Luas segitiga yang keempat pada gambar adalah yang terkecil adalah $L=\dfrac{1}{4} \dfrac{9}{4} \sqrt{3}=\dfrac{9}{16} \sqrt{3}$ sehingga berlaku $\begin{align} \dfrac{9}{16} \sqrt{3} & = \dfrac{1}{2} ss sin 60 \\ \dfrac{9}{16} \sqrt{3} & = \dfrac{1}{2} ss \dfrac{1}{2} \sqrt{3} \\ \dfrac{36}{16} & = s^{2} \\ \dfrac{6}{4} & = s \end{align}$ Jiak kita perhatikan pola perubahan panjang sisi segitiga diatas mengikuti pola deret geoemetri yaitu $12,\ 6,\ 3,\ \dfrac{6}{4}, \cdots$ $\therefore$ Pilihan yang sesuai adalah $D\ 1\dfrac{1}{2} cm$22. Contoh Soal US Matematika SMA 2023Suku ke-8 suatu deret aritmatika adalah $20$ dan jumlah suku ke-2 dengan suku ke-5 adalah $4$. Jumlah $20$ suku pertama deret adalah... $A\ 500 $ $B\ 600 $ $C\ 720 $ $D\ 810 $ $E\ 920 $ Alternatif PembahasanCatatan deret aritmatika untuk menyelesaikan soal diatas adalah suku ke-$n$ yaitu $U_{n}=a=n-1b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left2a+n-1b \right$ atau $S_{n}=\dfrac{n}{2} \lefta+U_{n} \right$ Suku ke-8 deret aritmatika adalah 20, berlaku $\begin{align} U_{8} & = 20 \\ a+7b & = 20 \end{align}$ Jumlah suku ke-2 dengan suku ke-16 adalah $26$, berlaku $\begin{align} U_{2} + U_{5} & = 4 \\ a+b + a+4b & = 4 \\ 2a+5b & = 4 \end{align}$ $\begin{array}{cccc} 2a+5b = 4 & \times 1 \\ a+7b=20 & \times 2 \\ \hline 2a+5b = 4 & \\ 2a+14b=40 & - \\ \hline 9b = 36 &\\ b = 4 &\\ a = 74-20=8 & \end{array} $ Jumlah $20$ suku pertama deret adalah $\begin{align} S_{n} & = \dfrac{n}{2} \left2a+n-1b \right \\ S_{20} & = \dfrac{20}{2} \left28+20-14 \right \\ & = 10 \left16+76 \right \\ & = 920 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 920$23. Contoh Soal US Matematika SMA 2023Hasil dari $\int 2x\ \sqrt{2x^{2}+1}\ dx$ adalah... $A\ \dfrac{1}{3}\sqrt{2x^{2}+1} + C $ $B\ \dfrac{3}{4} \left 2x^{2}+1 \right ^{2} \sqrt{2x^{2}+1} + C $ $C\ \dfrac{3}{4} \left 2x^{2}+1 \right \sqrt{2x^{2}+1} + C $ $D\ \dfrac{1}{3} \left 2x^{2}+1 \right ^{2} \sqrt{2x^{2}+1} + C $ $E\ \dfrac{1}{3} \left 2x^{2}+1 \right \sqrt{2x^{2}+1} + C $ Alternatif PembahasanHasil $\int 2x\ \sqrt{2x^{2}+1}\ dx$ kita coba kerjakan dengan pemisalan; Misal $\begin{align} u & = 2x^{2}+1 \\ \dfrac{du}{dx} & = 4x \\ du & = 4x\ dx \\ \dfrac{1}{2} du & = 2x\ dx \end{align}$ Soal diatas, kini bisa kita rubah menjadi; Misal $\begin{align} & \int 2x\ \sqrt{2x^{2}+1}\ dx \\ & = \int \left 2x^{2}+1 \right ^{\dfrac{1}{2}}\ 2x\ dx \\ & = \int \left u \right ^{\dfrac{1}{2}}\ \dfrac{1}{2} du \\ & = \dfrac{1}{2} \int \left u \right ^{\dfrac{1}{2}}\ du \\ & = \dfrac{1}{2} \cdot \dfrac{2}{3} \left u \right ^{\dfrac{3}{2}}\ + C \\ & = \dfrac{1}{3} \left 2x^{2}+1 \right ^{\dfrac{3}{2}}\ + C \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ \dfrac{1}{3} \left 2x^{2}+1 \right \sqrt{2x^{2}+1} +C$24. Contoh Soal US Matematika SMA 2023Diketahui $\int_{0}^{2} \left px^{2}+2x-1 \right dx=-\dfrac{10}{3}$. Nilai $p$ yang memenuhi adalah... $A\ -3 $ $B\ -2 $ $C\ -1 $ $D\ 2 $ $E\ 3 $ Alternatif Pembahasan$ \begin{align} \int_{0}^{2} \left px^{2}+2x-1 \right dx & = -\dfrac{10}{3} \\ \left [\dfrac{p}{3}x^{3}+x^{2}-x \right ]_{0}^{2} & = -\dfrac{10}{3} \\ \left [\dfrac{p}{3}2^{3}+2^{2}-2 \right ]-\left [\dfrac{p}{3}0^{3}+0^{2}-0 \right ] & = -\dfrac{10}{3} \\ \left [\dfrac{8p}{3}+4-2 \right ]- \left [ 0 \right ]& = -\dfrac{10}{3} \\ \dfrac{8p}{3}+2 & = -\dfrac{10}{3} \\ \dfrac{8p}{3} & = -\dfrac{10}{3}-2 \\ 8p & = -10-6 \\ p & = \dfrac{-16}{8}=-2 \end{align} $ $\therefore$ Pilihan yang sesuai adalah $B\ -2$25. Contoh Soal US Matematika SMA 2023Daerah yang diarsir pada grafik berikut merupakan penyelesaian suatu sistem pertidaksamaan adalah... Sistem pertidaksamaan linear yang sesuai adalah... $A\ x+2y \leq 6;\ 5x+3y \leq 15;\ x \geq 0;\ y \geq 0 $ $B\ x+2y \leq 6;\ 5x+3y \geq 15;\ x \geq 0;\ y \geq 0 $ $C\ x+2y \geq 6;\ 5x+3y \leq 15;\ x \geq 0;\ y \geq 0 $ $D\ x+2y \geq 6;\ 5x+3y \geq 15;\ x \geq 0;\ y \geq 0 $ $E\ x+2y \leq 6;\ 3x+5y \geq 15;\ x \geq 0;\ y \geq 0 $ Alternatif PembahasanUntuk menentukan sistem pertidaksamaan dari daerah yang diarsir pada gambar, pertama kita harus mendapatkan sistem persamaannya atau batas-batas daerah yang diarsir. Pada gambar diatas ada 4 garis yang membatasi daerah yang diarsir, coba kita berikan ilustrasinya; Batas-batas daerah yang memenuhi; $I\ 3x+6y=18\ \rightarrow\ x+2y=6$ $II\ 5x+3y=15$ $III\ y=0$ $IV\ x=0$ Untuk menentukan pertidaksamaannya, kita tentukan dengan titik uji. Kita pilih sebuah titik pada daerah yang merupakan himpunan penyelesaian atau daerah yang diarsir pada gambar. Titik $4,0$ ke $x+2y=6$ diperoleh $ 4 \leq 12 $, maka pertidaksamaannya adalah $ x+2y \leq 6 $. Titik $4,0$ ke $5x+3y=15$ diperoleh $ 20 \geq 15 $, maka pertidaksamaannya adalah $ 5x+3y \geq 15 $. Untuk batas $III$ dan $IV$ daerah yang diarsir adalah daerah $x \geq 0;\ y \geq 0$ Trik untuk melihat atau menentukan daerah Himpunan Penyelesaian dapat dengan melihat koefisien $y$. Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis. Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis. $\therefore$ Pilihan yang sesuai adalah $B\ x+2y \leq 6;\ 5x+3y \geq 15;\ x \geq 0;\ y \geq 0$ 26. Contoh Soal US Matematika SMA 2023Dalam sehari seorang anak membutuhkan $20$ unit vitamin A dan $5$ unit vitamin $B$, ada dua jenis tablet yang dapat dikonsumsi. tablet jenis pertama mengandung $5$ unit vitamin A dan $2$ unit vitamin B, sedangkan tablet kedua menagndung $10$ unit vitamin A dan $1$ unit vitamin B. Jika harga pertama tablet pertam $ dan tablet kedua $ pengeluaran minimum per hari untuk pembelian tablet adalah... $A\ $ $B\ $ $C\ $ $D\ $ $E\ $ Alternatif PembahasanInformasi yang ada pada soal coba kita rangkum dalam bentuk tabel, dengan memisalkan banyak tablet $\text{pertama}\ =x$ dan $\text{kedua}\ =y$ maka kurang lebih menjadi seperti berikut ini; Jenis tablet Vitamin A Vitamin B Pertama $x$ $5$ $2$ kedua $y$ $10$ $1$ keperluan $20$ $5$ Pengeluaran setiap hari tergantung nilai $x$ dan $y$ yaitu $P= x+ Dari tabel diatas, dapat kita bentuk sistem pertidaksamaannya; $\begin{align} 5x+10y & \geq 20 \\ \left x+2y \geq 4 \right & \\ 2x+y & \geq 5 \\ x & \geq 0 \\ y & \geq 0 \end{align} $Trik untuk melihat atau menentukan daerah Himpunan Penyelesaian dapat dengan melihat koefisien $y$. Jika koefisien $y$ positif dan tanda $\leq$ maka daerah HP berada di bawah garis. Jika koefisien $y$ positif dan tanda $\geq$ maka daerah HP berada di atas garis. Jika kita gambarkan ilustrasi daerah Himpunan Penyelesaian sistem pertidaksamaan diatas adalah; Untuk mendapatkan pengeluaran minimum, salah satu caranya dapat dengan titik uji pada titik sudut daerah HP kepada fungsi tujuan $P= x+ titik $4,0$ maka $P= 4+ titik $2,1$ maka $P= 2+ titik $2,1$ kita peroleh dengan mengeliminasi atau substitusi garis 1 dan garis 2 titik $0,5$ maka $P= 0+ $\therefore$ Pilihan yang sesuai adalah $B\ 27. Contoh Soal US Matematika SMA 2023Seorang siswa diminta mengerjakan $7$ soal dari $10$ soal ulangan, tetapi soal nomor genap harus di pilih. Banyak cara untuk memilih butir soal adalah... $A\ 18\ \text{cara} $ $B\ 16\ \text{cara} $ $C\ 14\ \text{cara} $ $D\ 12\ \text{cara} $ $E\ 10\ \text{cara} $ Alternatif PembahasanDari $10$ soal pilihan yang akan dikerjakan adalah $7$ tetapi nomor genap harus dikerjakan, maka pilihan hanya tinggal $2$ dari $5$ yang ada. Banyak cara memilih butir soal adalah $\begin{align} _{n}C_{r} & = \dfrac{n!}{r! n-r!} \\ _{5}C_{2} & = \dfrac{5!}{2! 5-3!} \\ & = \dfrac{5 \cdot 4 \cdot 3!}{2! 5-2!} \\ & = 10 \end{align} $ $\therefore$ Pilihan yang sesuai adalah $E\ 10\ \text{cara}$ 28. Contoh Soal US Matematika SMA 2023Satu keluarga yang terdiri atas $10$ orang akan berpergian dengan $2$ mobil yang masing-masing berkapasitas $6$ orang dan $7$ orang. Jika setiap mobil harus berisi sekurang-kurangnya $4$ orang, banyak cara mereka menempati 2 mobil tersebut adalah... $A\ 420\ \text{cara} $ $B\ 462\ \text{cara} $ $C\ 504\ \text{cara} $ $D\ 672\ \text{cara}$ $E\ \text{cara} $ Alternatif PembahasanCoba kita susun kemungkinan isi mobil I dan mobil II dalam bentuk pasangan terurut $6,4,\ 5,5,\ 4,6$ Banyak kemungkina isi mobil hanya berada pada tiga kemungkinan sehingga total keseluruhan adalah $\begin{align} & _{10}C_{6} \times _{4}C_{4} + _{10}C_{5} \times _{5}C_{5} +_{10}C_{4} \times _{6}C_{6} \\ & = 210 \times 1 + 252 \times 1 + 210 \times 1 \\ & = 627 \end{align} $ $\therefore$ Pilihan yang sesuai adalah $D\ 672\ \text{cara}$29. Contoh Soal US Matematika SMA 2023Susunan pengurus kelas terdiri dari ketua, wakil ketua, sekretaris, bendahara, dan sesi rohani. Ketentuan yang disepakati adalah ketua, wakil ketua dan sesi rohani diisi siswa laki-laki, sedangkan sekretaris dan bendahara adalah perempuan. Jika ada $5$ orang laki-laki dan $4$ perempuan yang akan dipilih, banyak susunan pengurus kelas yang bisa dibentuk adalah... $A\ 720\ \text{susunan} $ $B\ 360\ \text{susunan} $ $C\ 180\ \text{susunan} $ $D\ 120\ \text{susunan} $ $E\ 60\ \text{susunan} $ Alternatif PembahasanTempat yang akan diisi adalah $[\, K \,] \, [\, W \,] \, [\, R \,] \, [\, S \,] \, [\, B \,]$ Banyak susunan yang mungkin adalah $5 \times 4 \times 3 \times 4 \times 3$ atau sama dengan $720$ susunan. $\therefore$ Pilihan yang sesuai adalah $A\ 720\ \text{susunan}$30. Contoh Soal US Matematika SMA 2023Kotak I berisi $2$ bola merah dan $3$ bola putih, sedangkan kotak II berisi $5$ bola merah dan $3$ bola putih. Dari kedua kotak tersebut secara diambil secara acak masing-masing sebuah bola. Peluang terambil bola merah dari kotak I dan bola putih dari kotak II adalah... $A\ \dfrac{5}{40} $ $B\ \dfrac{3}{16} $ $C\ \dfrac{3}{20} $ $D\ \dfrac{1}{5} $ $E\ \dfrac{1}{4} $ Alternatif PembahasanPeluang sebuah kejadian $E$ adalah $PE=\dfrac{nE}{nS}$ Pada kotak I, merah=2 dan putih=3 Peluang terambil bola merah dari kotak I $\begin{align} PM_{I} & = \dfrac{nE_{I}}{nS_{I}} \\ & = \dfrac{2}{5} \end{align}$ Pada kotak II, merah=5 dan putih=3 Peluang terambil bola putih dari kotak II $\begin{align} PP_{II} & = \dfrac{nE_{II}}{nS_{II}} \\ & = \dfrac{3}{8} \end{align}$ Peluang terambil bola merah dari kotak I dan bola putih dari kotak II $\begin{align} PE & =PM_{I} \times PP_{II} \\ & =\dfrac{nE_{I}}{nS_{I}} \times \dfrac{nE_{II}}{nE_{II}} \\ & =\dfrac{2}{5} \times \dfrac{3}{8} \\ & =\dfrac{6}{40} = \dfrac{3}{20} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ \dfrac{3}{20}$ 31. Contoh Soal US Matematika SMA 2023Diberikan Histogram sebagai berikut Gambar ogive dari histogram tersebut adalah... $A$$B$ $C$ $D$ $E$ Alternatif PembahasanDari histogram yang disajikan pada gambar, dapat kita buat ogive positif dan ogive negatif. Untuk membuat ogive kita membutuhkan distribusi frekuensi relatif. Kita sajikan dalam bentuk tabel sebagai berikut Tabel distribusi Frekuensi Kelas Frekuensi $f_{k} \leq$ $f_{k} \geq$ $12-16$$6$$\leq 11,5 0$$\geq 11,5 44$ $17-21$$8$$\leq 16,5 6$$\geq 16,5 38$ $22-26$$12$$\leq 21,5 14$$\geq 21,5 30$ $27-31$$10$$\leq 26,5 26$$\geq 26,5 18$ $32-36$$5$$\leq 31,5 36$$\geq 31,5 8$ $37-41$$3$$\leq 36,5 41$$\geq 36,5 3$ $42-46$$0$$\leq 41,5 44$$\geq 41,5 0$ Jumlah$44$$-$$-$ Dari tabel diatas ogive yang paling tepat mewakili tabel distribusi frekuensi kurang dari dan lebih dari adalah grafik $C$ $\therefore$ Pilihan yang sesuai adalah $C$32. Contoh Soal US Matematika SMA 2023Modus dari data pada Histogram adalah... $A\ 72,00 $ $B\ 72,5 $ $C\ 73,5 $ $D\ 75,5 $ $E\ 77,5 $ Alternatif PembahasanModus adalah nilai yang paling sering muncul atau frekuensi yang paling besar. Untuk data tunggal modus suatu data mudah ditemukan, tetapi untuk data berkelompok modus data sedikit lebih indah. Modus data berkelompok dirumuskan seperti berikut ini; $Mo = Tb_{mo} + \left \frac{d_1}{d_1 + d_2} \right c$ dimana; $Tb_{mo}$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar. Dari histogram terlihat bahwa kelas yang memiliki frekuensi tertinggi adalah kelas $70-79$ dengan frekuensi $10$, maka kelas modusnya adalah kelas ke-4 dengan interval $70-79$; $Tb_{mo} = 69,5$; $d_1$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus; $d_{1}=10-7=3$; $d_2$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus; $d_{2}=10-8=2$; $c$ Panjang Kelas $c=79,5-69,5=10$; $ \begin{align} Mo & = Tb_{mo} + \left \frac{d_1}{d_1 + d_2} \right c \\ & = 69,5 + \left \frac{3}{3 + 2} \right \cdot 10 \\ & = 69,5 + \left \frac{3}{5} \right \cdot 10 \\ & = 69,5 + \frac{30}{5} \\ & = 69,5 + 6 \\ & = 75,5 \end{align} $ $\therefore$ Pilihan yang sesuai $D\ 75,5$33. Contoh Soal US Matematika SMA 2023Tabel berikut menyatakan data nilai ujian matematika di suatu sekolah. Nilai Frekuensi $30-39$ $1$ $40-49$ $3$ $50-59$ $11$ $60-69$ $20$ $70-79$ $44$ $80-89$ $32$ $90-99$ $9$ Kuartil bawah data tersebut adalah... $A\ 68,0 $ $B\ 67,0 $ $C\ 66,0 $ $D\ 65,0 $ $E\ 64,0 $ Alternatif PembahasanKuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar. Kuartil terdiri dari tiga jenis yaitu kuartil pertama $Q_{1}$ yang disebut juga kuartil bawah, Kuartil kedua $Q_{2}$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $Q_{3}$ yang disebut juga kuartil atas. Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=120$.Untuk menentukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}n+1 \right]$ $Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}120+1 \right]=30,75$ $Q_{1}$ berada pada data ke-$30,75$ artinya $Q_{1}$ berada pada kelas interval $60-69$ *1+3+11+20=35 Tepi bawah kelas $Q_{1}$ $60-69$ $t_{b}= 60 - 0,5 = 59,5 $ Frekuensi kumulatif sebelum kelas $Q_{1}$, $f_{k}= 1+3+11=15$ Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=20$ Panjang kelas $c=69,5-59,5=10$ $ \begin{align} Q_{1} & = t_{b} + \left \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \rightc \\ & = 59,5 + \left \frac{\frac{1}{4} \cdot 120 - 15}{20} \right10 \\ & = 59,5 + \left \frac{30 - 15}{20} \right10 \\ & = 59,5 + \left \frac{15}{20} \right10 \\ & = 59,5 + 7,5 \\ & = 67,0 \end{align} $ $\therefore$ Pilihan yang sesuai $B\ 67,0$34. Contoh Soal US Matematika SMA 2023Dani dan Salsa sedang mengamati salah satu sisi piramida yang berbentuk segitiga dengan titik sudutnya diberi tanda $P,\ Q,\ \text{dan}\ R$. Ukuran panjang sisi $PQ$ adalah $8\ cm$, panjang sisi $QR$ adalah $6\ cm$, dan besar sudut $Q=60^{\circ}$. Luas segitiga tersebut adalah.. $A\ 12 \sqrt{6}\ cm^{2} $ $B\ 12 \sqrt{5}\ cm^{2} $ $C\ 12 \sqrt{3}\ cm^{2} $ $D\ 12 \sqrt{2}\ cm^{2} $ $E\ 12 cm^{2} $ Alternatif PembahasanSegitiga yang diamati Dani dan Salsa adalah segitiga $PQR$ dimana diketahui $PQ=8\ cm$, $QR=6\ cm$, dan besar sudut $Q=60^{\circ}$. Luas segitiga $PQR$ dapat kita hitung dengan menggunakan luas segitiga jika diketahui panjang dua sisi dan satu sudut, yaitu $\begin{align} L & = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ Q \\ & = \dfrac{1}{2} \cdot PQ \cdot QR\ \cdot sin\ 60^{\circ} \\ & = \dfrac{1}{2} \cdot 8 \cdot 6 \cdot \dfrac{1}{2} \sqrt{3} \\ & = 12 \sqrt{3} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ 12 \sqrt{3}\ cm^{2}$35. Contoh Soal US Matematika SMA 2023Pada suatu hari diketahui penumpang kereta api $X$ dan $Y$ adalah sebagai berikut Jenis Kereta Api Kelas Bisnis Kelas Eksekutif X $200$ $60$ Y $150$ $80$ Harga tiket kereta api $ untuk kelas bisnis dan $ untuk kelas eksekutif. Besar pendapatan yang diterima dari kereta api $X$ dan $Y$ dapat diselesaikan dengan menggunakan persamaan bentuk matriks... $A\ \begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 200 & 60\\ 150 & 80 \end{pmatrix}\begin{pmatrix} \end{pmatrix} $ $B\ \begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 200 & 150\\ 60 & 80 \end{pmatrix}\begin{pmatrix} \end{pmatrix} $ $C\ \begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 200 & 80\\ 60 & 150 \end{pmatrix}\begin{pmatrix} \end{pmatrix} $ $D\ \begin{pmatrix} 200 & 60\\ 150 & 80 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} \end{pmatrix} $ $E\ \begin{pmatrix} 200 & 150\\ 60 & 80 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} \end{pmatrix} $ Alternatif PembahasanDari tabel yang diberikan diatas, besar pendapatan untuk kedua kereta api adalah $X=200 \times + 60 \times $ $Y=150 \times + 80 \times $ Persamaan diatas dapat kita tuliskan dalam perkalian matriks. Jika ditulis dalam bentuk matriks menjadi $\begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 200 & 60\\ 150 & 80 \end{pmatrix}\begin{pmatrix} \end{pmatrix}$ Selesaikan perkalian matriks diatas lalu dilanjutkan dengan kesamaan dua matriks maka akan kita peroleh persamaan seperti apa yang akan kita tentukan. $\therefore$ Pilihan yang sesuai adalah $A\ \begin{pmatrix} x\\ y \end{pmatrix}=\begin{pmatrix} 200 & 60\\ 150 & 80 \end{pmatrix}\begin{pmatrix} \end{pmatrix}$ 36. Contoh Soal US Matematika SMA 2023Setiap tahun harga jual tanah di sebuah komplek perumahan mengalami kenaikan $20\%$ dari tahun sebelumnya, sedangkan harga jual bangunannya mengalami penurunan $10\%$ dari tahun sebelumnya. Sebuah rumah dibeli $5$ tahun yang lalu seharga $200$ juta rupiah dengan perbandingan harga beli tanah terhadap bangunan $32$. Harga jual rumah tersebut tanah dan bangunan saat ini adalah... $A\ \left \{ 120 \left \dfrac{6}{5} \right ^{6}+80\left \dfrac{9}{10} \right ^{6} \right \}\ \text{juta rupiah} $ $B\ \left \{ 120\left \dfrac{6}{5} \right ^{5}+80\left \dfrac{9}{10} \right ^{5} \right \}\ \text{juta rupiah} $ $C\ \left \{ 120\left \dfrac{6}{5} \right ^{4}+80\left \dfrac{9}{10} \right ^{4} \right \}\ \text{juta rupiah} $ $D\ \left \{ 80\left \dfrac{6}{5} \right ^{5}+120\left \dfrac{9}{10} \right ^{5} \right \}\ \text{juta rupiah} $ $E\ \left \{ 80\left \dfrac{6}{5} \right ^{4}+120\left \dfrac{9}{10} \right ^{4} \right \}\ \text{juta rupiah} $ Alternatif PembahasanLima tahun yang lalu rumah dan tanah dibeli dengan harga 200 juta. Jika dipecah harga bangunan 80 juta dan tanah 120 juta. Harga jual tanah tiap tahun naik $20\%$ dari harga sebelumnya sehingga perkembangan harga mengikuti barisan geometri dengan $a=120$ dan rasio $r=1+\ 20\%$ atau $r=\dfrac{6}{5}$. Sehingga harga sekarang dari $5$ tahun yang lalu adalah $ \begin{align} U_{n} & = ar^{n-1} \\ U_{5} & = ar^{5-1} \\ & = 120 \cdot \left \dfrac{6}{5} \right ^{4} \end{align} $ Harga jual bangunan tiap tahun turun $10\%$ dari harga sebelumnya sehingga perkembangan harga mengikuti barisan geometri dengan $a=80$ dan rasio $r=1-\ 10\%$ atau $r=\dfrac{9}{10}$. Sehingga harga sekarang dari $5$ tahun yang lalu adalah $ \begin{align} U_{n} & = ar^{n-1} \\ U_{5} & = ar^{5-1} \\ & = 80 \cdot \left \dfrac{9}{10} \right ^{4} \end{align} $ $\therefore$ Pilihan yang sesuai $C\ \left \{ 120\left \dfrac{6}{5} \right ^{4}+80\left \dfrac{9}{10} \right ^{4} \right \}\ \text{juta rupiah}$ 37. Contoh Soal US Matematika SMA 2023Diketahui akar-akar persamaan kuadrat $x^{2}-3x+7=0$ adalah $x_{1}$ dan $x_{2}$. Persamaan kuadrat baru yang akar-akarnya $\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}$ dan $\dfrac{x_{1}}{x_{2}}+\dfrac{x_{2}}{x_{1}}$ adalah $ax^{2}+bx+c=0$. Nilai $2a+b+c$ adalah... $A\ 93 $ $B\ 94 $ $C\ 95 $ $D\ 96 $ $E\ 97 $ Alternatif PembahasanPersamaan kuadrat $x^{2}-3x+7=0$ mempunyai akar-akar $x_{1}$ dan $x_{2}$ maka $\begin{align} x_{1} + x_{2} & = -\dfrac{b}{a}=-\dfrac{-3}{1}=3 \\ x_{1} \times x_{2} & = \dfrac{c}{a}=\dfrac{7}{1}=7 \\ \dfrac{1}{x_{1}}+\dfrac{1}{x_{2}} & = \dfrac{x_{1} + x_{2}}{x_{1} \times x_{2}} = \dfrac{3}{7} \\ x_{1}^{2}+x_{2}^{2} & = \left x_{1} +x_{2} \right^{2}-2x_{1} x_{2} \\ & = 9-27=-5 \end{align}$ Salah satu cara menyusun persamaan kuadrat adalah dengan mengetahui hasil jumlah dan hasil kali akar persamaan kuadrat tersebut. Jika sebuah persamaan kuadrat akar-akarnya adalah $\alpha$ dan $\beta$ maka persamaan kuadrat tersebut adalah $x^{2}-\left \alpha+\beta \rightx+\left \alpha \times \beta \right=0$ $\begin{align} \alpha + \beta & = \dfrac{1}{x_{1}}+\dfrac{1}{x_{2}} + \dfrac{x_{1}}{x_{2}}+\dfrac{x_{2}}{x_{1}} \\ & = \dfrac{3}{7} + \dfrac{x_{1}^{2}+x_{2}^{2}}{x_{1} \times x_{2}} \\ & = \dfrac{3}{7} + \dfrac{-5}{7} \\ & = \dfrac{-2}{7} \end{align}$ $\begin{align} \alpha \times \beta & = \dfrac{1}{x_{1}}+\dfrac{1}{x_{2}} \times \dfrac{x_{1}}{x_{2}}+\dfrac{x_{2}}{x_{1}} \\ & = \dfrac{3}{7} \times \dfrac{-5}{7} \\ & = \dfrac{-15}{49} \end{align}$ Persamaan kuadrat yang baru adalah $\begin{align} x^{2}-\left \alpha +\beta \rightx+\left \alpha \times \beta \right & =0 \\ x^{2}-\left \dfrac{-2}{7} \rightx+\left \dfrac{-15}{49} \right & = 0 \\ 49x^{2}+14x-15=0 \end{align}$ *soal ini memiliki banyak jawaban Nilai $2a+b+c$ adalah $249+14-15=97$ $\therefore$ Pilihan yang sesuai $E\ 97$38. Contoh Soal US Matematika SMA 2023Diketahui fungsi $fx=\begin{cases}x^{2}+px-3,\ x\leq 2 \\ 5x-1,\ x \gt 2 \end{cases}$ Agar $\lim\limits_{x \to 2}fx$ memiliki nilai, maka nilai $p$ yang memenuhi adalah... $A\ 2 $ $B\ 3 $ $C\ 4 $ $D\ 5 $ $E\ 6 $ Alternatif PembahasanBerdasarkan defenisi limit, agar $\lim\limits_{x \to 2}fx$ mempunyai nilai maka Limit Kiri = Limit Kanan secara simbol dituliskan $\lim\limits_{x \to 2^{+}}fx=\lim\limits_{x \to 2^{-}}fx=L$ Limit kanan $\lim\limits_{x \to 2^{+}}fx$ $\lim\limits_{x \to 2^{+}}5x-1=52-1=9$ Limit kiri $\lim\limits_{x \to 2^{-}}fx$ $\lim\limits_{x \to 2^{-}}x^{2}+px-3=2^{2}+p2-3=1+2p$ Berdasarkan defenisi agar $\lim\limits_{x \to 2}fx$ mempunyai nilai yaitu Limit Kiri = Limit Kanan maka $\begin{align} 1+2p & = 9 \\ 2p & = 8 \\ p & = 4 \end{align}$ $\therefore$ Pilihan yang sesuai $C\ 4$39. Contoh Soal US Matematika SMA 2023Fungsi trigonometri $fx=2\ sin\ x + 1$ memotong sumbu $X$ pada interval $270^{\circ} \leq x \leq 360^{\circ}$. Nilai $x$ yang memenuhi adalah... $A\ 270^{\circ} $ $B\ 300^{\circ} $ $C\ 315^{\circ} $ $D\ 330^{\circ} $ $E\ 360^{\circ} $ Alternatif PembahasanFungsi $fx=2\ sin\ x + 1$ memotong sumbu $X$ sehingga $\begin{align} 2\ sin\ x + 1 & = 0 \\ 2\ sin\ x & = -1 \\ sin\ x & = -\dfrac{1}{2} \\ sin\ x & = sin 330 \\ \end{align}$ $\begin{align} x = 330+k \cdot 360\ & \vee\ x = 180-330+k \cdot 360 \\ x = 330+k \cdot 360\ & \vee\ x = -150+k \cdot 360 \end{align}$Untuk $k=-1$ $x = -30 \vee\ x = -510$ Untuk $k=0$ $x = 330 \vee\ x = -150$ Untuk $k=1$ $x = 690 \vee\ x = 210$ $\therefore$ Pilihan yang sesuai $D\ 330^{\circ}$40. Contoh Soal US Matematika SMA 2023Kota $P$ dan kota $T$ dihubungkan oleh beberapa jalan melalui kota $Q, R,$ dan $S$ seperti pada gambar berikut Budi berangkat dari kota $P$ menuju kota $T$. Banyak alternatif jalan yang dapat dipilih Budi adalah... $A\ 8 $ $B\ 12 $ $C\ 16 $ $D\ 20 $ $E\ 24 $ Alternatif PembahasanUntuk sampai ke Kota $T$ dari $P$ ada dua alternatif jalur yang dipilih yaitu melalui kota kota $R$ atau $S$. Jika melalui $S$ banyak alternatif jalan adalah $4 \times 3 \times 1=12$. Jika melalui $R$ banyak alternatif jalan adalah $4 \times 1 \times 2=8$. Total banyak jalan alternatif adalah $12+8=20$ $\therefore$ Pilihan yang sesuai $D\ 20$ Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras Soal dan Pembahasan Ujian Sekolah US Matematika SMA 2023 Sebagai tambahan untuk latihan Ujian Sekolah US matematika SMA bentuk lain, beberapa catatan berikut dapat dijadikan bahan latihan dalam mempersiapkan diri menghadapi Ujian Sekolah US Matematika SMA. 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh A *Soal Lengkap 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh B *Soal Lengkap 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh C *Soal Lengkap 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh D *Soal Lengkap 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh E *Soal Lengkap 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh F *Soal Lengkap 40 Soal dan Pembahasan Simulasi Ujian Sekolah US Matematika SMA Tahun 2023 Contoh G *Soal Lengkap Untuk segala sesuatu hal yang perlu kita diskusikan terkait Pembahasan 40 Soal Latihan Ujian Sekolah US Matematika SMA Tahun 2023 Model Soal F silahkan disampaikan Ÿ™ CMIIWŸ˜Š. Jangan Lupa Untuk Berbagi Ÿ™ Share is Caring Ÿ€ dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEŸ˜Š Matematikastudycenter- Contoh Kumpulan soal UN matematika SMA materi integral bentuk substitusi fungsi aljabar dari tahun 2001 hingga 2012, 2013, 2014 tanpa disertai dengan pembahasan. Topik […] Kumpulan soal ujian nasional matematika SMA materi trigonometri, menyelesaikan persamaan trigonometri, rangkuman soal UN dari tahun 2008 hingga 2013, 2014. Materi / SKL / […] Kumpulan soal ujian nasional matematika SMA materi trigonometri, penggunaan relasi dasar dan aturan sinus cosinus dalam meyelesaikan beberapa masalah terkait geometri rangkuman soal UN […] Kumpulan soal ujian nasional matematika SMA materi diferensial aplikasi penerapan konsep turunan, rangkuman soal UN dari tahun 2008 hingga 2013, 2014. Materi / SKL […] Matematikastudycenter- Kumpulan soal ujian nasional matematika SMA materi fungsi eksponen dan fungsi logaritma dari tahun 2007 hingga 2011, dan 2012, 2013, 2014 tercakup indikator menyelesaikan […] Kumpulan soal ujian nasional matematika SMA materi jarak dan sudut antar titik, garis, bidang dari tahun 2007 hingga 2011, 2012, 2013, 2014 tercakup indikator […] Matematikastudycenter- Kumpulan soal ujian nasional matematika SMA materi logaritma dari tahun 2007 hingga 2011, 2013, 2014 tercakup indikator bentuk logaritma. Materi / SKL / Kisi-kisi […] Matematikastudycenter- Contoh kumpulan soal ujian nasional matematika SMA materi bentuk akar dan pangkat dari tahun 2007 hingga 2011, 2012, 2013, 2014 tercakup indikator bentuk akar […] Matematikastudycenter- Kumpulan soal ujian nasional matematika SMA materi integral aljabar dari tahun 2007 hingga 2011, 2013, 2014 tercakup indikator menentukan integral tak tentu dan integral […] Matematikastudycenter- Kumpulan soal ujian nasional matematika SMA materi DERET ARITMETIKA dan Geometri dari tahun 2007 hingga 2011, 2012, 2013, 2014 dan 2015 tercakup indikator menyelesaikan […]

bank soal un matematika sma